
Iterative Methods for Eigenvalue Problems, SVD Calculation,
and Applications in Image Compression and Steganography

Torin Kovach
Carnegie Mellon University
Pittsburgh, Pennsylvania

torin@cmu.edu

Andrew Park
Carnegie Mellon University
Pittsburgh, Pennsylvania
ajpark@andrew.cmu.edu

1 INTRODUCTION
For the �nal project of 21-241, we chose to work on building iter-
ative methods to compute eigenvectors and singular vectors. We
began by writing programs for the Power Method and QR method
to �nd eigenvectors and eigenvalues, using the Julia language. This
included writing our own method for QR decomposition and im-
plementing an algorithm for inverse iteration. Then, we analyzed
the performance between the two algorithms for sparse and dense
matrices. Next, we implemented each method into a program to
calculate singular value decomposition (SVD). Using this SVD cal-
culation program, we used low-rank approximations to compress
black and white images. Finally, we used the SVD calculation pro-
gram to design a steganographic method to encode text into and
decode text from black and white images.

1.1 Notes On Notation
For the rest of this paper, given matrix 𝐴, let 𝐴∗𝑖 represent the 𝑖-th
column of𝐴, and let𝐴𝑖∗ represent the 𝑖-th row of𝐴. Furthermore, let
𝐴𝑖 𝑗 or 𝐴𝑖, 𝑗 for more complicated expressions represent the element
at the 𝑖-th row and 𝑗-th column of 𝐴.

2 POWER METHOD
The power method is an e�ective method for computing eigen-
values of matrices with special properties. Given 𝑛 × 𝑛 matrix 𝐴,
to use the power method 𝐴 should have 𝑛 linearly independent
eigenvectors and the eigenvalues, namely 𝜆𝑖 for 1 ≥ 𝑖 ≥ 𝑛, which
can be ordered in magnitude as the following:

|𝜆1 | > |𝜆2 | ≥ · · · ≥ |𝜆𝑛 |

Note that there is the dominant eigenvalue 𝜆1, which has the great-
est magnitude out of all the eigenvalues of 𝐴.
We will explain the process and motivation behind the power
method. Let ®𝑥0 be an arbitrary vector of length𝑛, and let {®𝑣1, ®𝑣2, . . . , ®𝑣𝑛}
be a set of 𝑛 linearly independent eigenvectors of 𝐴. As 𝐴 is 𝑛 × 𝑛
and has 𝑛 distinct eigenvectors, it follows that there must exist a
{𝑎1, 𝑎2, . . . , 𝑎𝑛} ⊆ R such that ®𝑥0 can be written as:

®𝑥0 = 𝑎1®𝑣1 + 𝑎2®𝑣2 + · · · + 𝑎𝑛®𝑣𝑛

From this equation, we can express 𝐴𝑛 ®𝑥0 for an arbitrary𝑚 ∈ N+.

𝐴®𝑥0 = 𝑎1𝜆1®𝑣1 + 𝑎2𝜆2®𝑣2 + · · · + 𝑎𝑛𝜆𝑛®𝑣𝑛
𝐴2 ®𝑥0 = 𝑎1𝜆

2
1®𝑣1 + 𝑎2𝜆

2
2®𝑣2 + · · · + 𝑎𝑛𝜆

2
𝑛®𝑣𝑛

· · ·
𝐴𝑚 ®𝑥0 = 𝑎1𝜆

𝑚
1 ®𝑣1 + 𝑎2𝜆

𝑚
2 ®𝑣2 + · · · + 𝑎𝑛𝜆

𝑚
𝑛 ®𝑣𝑛

By dividing by 𝜆𝑚1 , we �nd:

𝐴𝑚 ®𝑥0
𝜆𝑚1

= 𝑎1®𝑣1 + 𝑎2
(
𝜆2
𝜆1

)𝑚
®𝑣2 + · · · + 𝑎𝑛

(
𝜆𝑛

𝜆1

)𝑚
®𝑣𝑛

Because 𝜆1 is the dominant eigenvalue, we know that |𝜆𝑖/𝜆1 | < 1
for all 1 < 𝑖 ≤ 𝑛. As a result, the the terms 𝜆2/𝜆1, 𝜆3/𝜆1, · · · 𝜆𝑛/𝜆1
each approach zero as𝑚 increases. Thus, for su�ciently large𝑚:

𝐴𝑚 ®𝑥0
𝜆𝑚1

≈ 𝑎1®𝑣1 + 𝑎2 (0)®𝑣2 + · · · + 𝑎𝑛 (0)®𝑣𝑛 = 𝑎1®𝑣1

Now, if we divide the (𝑚 + 1)-th term by the𝑚-th term, we can �nd
an approximation for the dominant eigenvalue:

𝐴𝑚+1 ®𝑥0
𝐴𝑚 ®𝑥0

=
𝜆𝑚+11 𝑎1®𝑣1
𝜆𝑚1 𝑎1®𝑣1

= 𝜆1

In order to �nd the rest of the eigenvalues, we can simply project
the matrix A onto the orthogonal space of the largest eigenvalue,
in a process known as de�ation. Then, we can apply the power
method again to the new, smaller matrix to �nd the next biggest
eigenvalue. As a result, we can recursively �nd all 𝑛 eigenvalues of
our given matrix 𝐴.

3 QR METHOD
The QR method is the second eigenvalue algorithm we discuss in
this paper. It is premised on repeatedly performing QR decomposi-
tion, multiplying the resulting matrices in reverse order, performing
QR decomposition again, and onwards to produce an upper trian-
gular matrix with the eigenvalues on its diagonal.

3.1 QR Decomposition
While the Julia language includes a functionality to perform QR
decomposition, as this process is such a primary part of the QR
method, we endeavored to design our own program to calculate QR
decomposition from scratch. This was done in two steps – �rstly,
we wrote a naive QR decomposition algorithm, and secondly, we
improved this algorithm to produce a computationally faster one.
Both QR decomposition algorithms start with an𝑚 × 𝑛 matrix 𝐴
with linearly independent columns (as a result,𝑚 ≥ 𝑛), and produce
𝑚 × 𝑛 orthonormal matrix 𝑄 and 𝑛 × 𝑛 upper triangular matrix 𝑅
such that 𝐴 = 𝑄𝑅. The naive algorithm proceeds using this simple
recursive de�nition for 1 ≤ 𝑖 ≤ 𝑚:

®𝑤𝑖 = 𝐴∗𝑖 −
𝑖−1∑
𝑘=1

proj𝑄∗𝑘𝐴∗𝑖 𝑄∗𝑖 =
®𝑤𝑖

| ®𝑤𝑖 |

𝑅𝑖 𝑗 = 𝑄𝑇
∗𝑖𝐴∗𝑗

As discussed in class, this is simply the Gram-Schmidt algorithm –
we treat the columns of 𝐴 as a basis of a subspace in R𝑚 , and the
columns of 𝑄 as an orthonormal basis of the same subspace. Note
that for 1 ≤ 𝑗 ≤ 𝑛, 𝐴∗𝑗 is orthogonal to 𝑄∗𝑖 for 𝑗 < 𝑖 ≤ 𝑛. Thus, for
all 𝑖 > 𝑗 , 𝑅𝑖 𝑗 = 0, and as a result 𝑅 is upper triangular. This method
directly transcribed to code produces the algorithm:

Algorithm 1 Naive 𝑄𝑅 Decomposition
Require: 𝐴 is𝑚 × 𝑛, has independent columns
Ensure: 𝑄 orthonormal, 𝑅 upper triangular, 𝐴 = 𝑄𝑅

1: 𝑄 ←𝑚 × 𝑛 matrix
2: 𝑅 ← 𝑛 × 𝑛 matrix, all values 0
3: for 𝑖 : 1→ 𝑛 do
4: 𝑤 ← 𝐴∗𝑖
5: for 𝑘 : 1→ 𝑖 − 1 do
6: 𝑤 ← 𝑤 − (𝑄𝑇

∗𝑘𝐴∗𝑖)𝑄∗𝑘
7: end for
8: 𝑄∗𝑖 = 𝑤 / | |𝑤 | |
9: end for
10: for 𝑖 : 1→ 𝑛, 𝑗 : 1→𝑚 do
11: 𝑅𝑖 𝑗 ← 𝑄𝑇

∗𝑖𝐴∗𝑗
12: end for
13: return 𝑄 , 𝑅

Note that as the columns of 𝑄 are orthonormal, the formula for
projections can be simpli�ed to that used on line 6.
Now, we move on to our more e�cient, modi�ed method for QR
decomposition. Note that as 𝐴 = 𝑄𝑅, 𝑅 upper triangular, it follows
that for 1 ≤ 𝑖 ≤ 𝑛:

𝐴∗𝑖 =
𝑖∑

𝑘=1
𝑄∗𝑘𝑅𝑘𝑖 =⇒ 𝐴 =

𝑛∑
𝑘=1

𝑄∗𝑘𝑅𝑘∗

From this summation, we can de�ne a series 𝐴(𝑖) for 1 ≤ 𝑖 ≤ 𝑛 + 1:

𝐴(𝑖) =
𝑛∑
𝑘=𝑖

𝑄∗𝑘𝑅𝑘∗

This summation will give us a few interesting properties. First,
where ®𝑒𝑖 is a standard basis vector, it is possible to show that:

𝐴
(𝑖)
∗𝑖 = 𝐴(𝑖) ®𝑒𝑖

=

𝑛∑
𝑘=𝑖

(𝑄∗𝑘𝑅𝑘∗®𝑒𝑖)

= 𝑄∗𝑖𝑅𝑖𝑖

As a result, 𝑄∗𝑖 =
𝐴
(𝑖)
∗𝑖
𝑅𝑖𝑖

, and as 𝑄 orthonormal, 𝑅𝑖𝑖 = | |𝐴(𝑖)∗𝑖 | |. Fur-
thermore, using the fact that 𝑄 is orthonormal we can show:(

𝐴(𝑖)
)𝑇

𝑄∗𝑖 =

(
𝑛∑
𝑘=𝑖

𝑄∗𝑘𝑅𝑘∗

)𝑇
𝑄∗𝑖

=

𝑛∑
𝑘=𝑖

𝑅𝑇
𝑘∗𝑄

𝑇
∗𝑘𝑄∗𝑖

= 𝑅𝑇𝑖∗

As a result, 𝑅𝑘𝑖 =

(
𝐴
(𝑖)
∗𝑘

)𝑇
𝑄∗𝑖 . Thus, using 𝐴(𝑖) , we can �nd 𝑅∗𝑖 .

Now, note that 𝐴(1) = 𝐴. From this fact, we can show that:

𝐴(𝑖) −𝑄∗𝑖𝑅𝑖∗ =
𝑛∑

𝑘=𝑖+1
𝑄∗𝑘𝑅𝑘∗ = 𝐴(𝑖+1)

Thus, we can iteratively calculate 𝑖 + 1. Using this process, we can
de�ne a new, more e�cient 𝑄𝑅 algorithm.

Algorithm 2 Modi�ed 𝑄𝑅 Decomposition
Require: 𝐴 is𝑚 × 𝑛, has independent columns
Ensure: 𝑄 orthonormal, 𝑅 upper triangular, 𝐴 = 𝑄𝑅

1: 𝑄 ←𝑚 × 𝑛 matrix
2: 𝑅 ← 𝑛 × 𝑛 matrix, all values 0
3: for 𝑖 : 1→ 𝑛 do
4: 𝑅𝑖𝑖 ← ||𝐴∗𝑖 | |
5: 𝑤 ← 𝐴∗𝑘 /𝑅𝑖𝑖
6: 𝑄∗𝑖 ← 𝑤 / | |𝑤 | |
7: for 𝑗 : 𝑖 + 1→ 𝑛 do
8: 𝑅𝑖 𝑗 = 𝐴𝑇∗𝑗𝑄∗𝑖
9: 𝐴∗𝑗 ← 𝐴∗𝑗 − (𝑅𝑖 𝑗)𝑄∗𝑖
10: end for
11: end for
12: return 𝑄 , 𝑅

To demonstrate the di�erence in e�ciency between our algorithms,
we plotted their runtimes to calculate QR decompositions of sym-
metric matrices. The �gure below documents the average number
of seconds each algorithm took to �nd 𝑄𝑅 decompositions for 100
symmetric matrices of various sizes.

0 100 200 300

0

0.1

0.2

0.3

Size of Matrices (𝑛 × 𝑛)

Av
er
ag
e
Ru

nt
im

e
(s
ec
)

Naive
Modi�ed

We see quite clearly our e�orts were not in vain – the modi�ed
algorithm runs much faster!

3.2 QR Method
Now that we have code to calculate a 𝑄𝑅 decomposition, we have
the necessary tools to write our eigenvalue algorithm. Given matrix
𝐴, consider a sequence of matrices (𝐴𝑘)𝑘∈N, with 𝐴 = 𝐴0. Given
𝑄𝑅 decomposition for 𝑖 ∈ N as 𝐴𝑖 = 𝑄𝑖𝑅𝑖 , our sequence is de�ned
as 𝐴𝑖+1 = 𝑅𝑖𝑄𝑖 . By the fact that 𝑄 orthonormal, it follows:

𝐴𝑖+1 = 𝑄𝑇
𝑖 𝑄𝑖𝐴𝑖+1 = 𝑄𝑇

𝑖 𝑄𝑖𝑅𝑖𝑄𝑖 = 𝑄𝑇
𝑖 𝐴𝑖𝑄𝑖

2

Thus, 𝐴𝑖+1 and 𝐴𝑖 are similar, and as a result they must have the
same eigenvalues. Inductively, it follows that all of the matrices in
our sequence have the same eigenvalues. The 𝑄𝑅 algorithm can
be viewed as similar to the "power" method – however, instead of
working upon single vectors, it works on a basis of vectors. As we
continue the 𝑄𝑅 iteration, we �nd that 𝐴 slowly becomes upper
triangular – as a result, the eigenvalues of𝐴 appear on the diagonal
of 𝐴𝑖 . To actually implement the algorithm, we simply iterated
through the matrix until the all values on the diagonal converged
within a certain error bound. The algorithmic implementation is
shown at the start of page 3.

Algorithm 3 Naive 𝑄𝑅 Method
Require: 𝐴 is 𝑛 × 𝑛,𝑀 is reasonable margin of error
Ensure: (∀𝜆 ∈ 𝐿) (∃®𝑣 ∈ R𝑛) (𝐴®𝑣 ≈ 𝜆®𝑣)
1: 𝐿 ← array of size 𝑛
2: 𝑖 ← 𝑛 (indexing current eigenvalue)
3: 𝑐 ← 𝐴𝑖𝑖 (current eigenvalue approximation)
4: while 𝑖 > 0 do
5: 𝑄, 𝑅 ← 𝑄𝑅 decomp. of 𝐴
6: 𝐴← 𝑅𝑄 (calculating next item in sequence)
7: if |𝐴𝑖𝑖 − 𝑐 | ≤ 𝑀 then
8: 𝐿 ← 𝐴𝑖𝑖

9: 𝑖 ← 𝑖 − 1
10: else
11: 𝑐 = 𝐴𝑖𝑖

12: end if
13: end while
14: return 𝐿,𝑉

While this algorithm provides accurate eigenvalues, its complexity
is still impractical. We �rst implemented a couple key modi�cations
to hasten our algorithm. Then, we implemented a few more key
modi�cations to ensure accurate eigenvalue calculation.
De�ation. Through the 𝑄𝑅 iteration, we calculate eigenvalues it-
eratively from 𝑛 to 1. As a result, once we have calculated the
𝑖-th eigenvalue, it is not necessary to retain the 𝑖-th through 𝑛-th
columns to produce the rest of the eigenvalues. As a result, once
we have converged upon a speci�c eigenvalue, we can continue
computation with a smaller matrix with the eigenvalue removed.
While this does not have a sizable impact at the beginning of the𝑄𝑅
algorithm, it greatly speeds up the last iterations of the algorithm,
as we operate with increasingly small matrices.
Shifting. Note that if we can cause the 𝑄𝑅 iteration to converge
faster, it will result in greater e�ciency. In our �rst implementation,
the speed of convergence is approximately the ratio between eigen-
values, that is |𝜆𝑖−1 /𝜆𝑖 | when we are attempting to �nd eigenvalue
𝜆𝑖 (smaller ratio results in faster convergence). One method to has-
ten convergence is to implement a type of shifting – that is, given
a sequence (𝜇𝑘)𝑘∈N, we modify our method so that:

𝐴𝑖 − 𝜇𝑖 𝐼 = 𝑄𝑖𝑅𝑖 𝐴𝑖+1 = 𝑅𝑖𝑄𝑖 + 𝜇𝑖 𝐼

With a few simple computations, we see that the similarity relation-
ship between 𝐴𝑖 and 𝐴𝑖+1 is still preserved with this new formula:

𝐴𝑖+1 − 𝜇𝑖 𝐼 = 𝑅𝑖𝑄𝑖

= 𝑄𝑇
𝑖 𝑄𝑖𝑅𝑖𝑄𝑖

= 𝑄𝑇
𝑖 (𝐴𝑖 − 𝜇𝑖 𝐼)𝑄𝑖

= 𝑄𝑇
𝑖 𝐴𝑖𝑄𝑖 − 𝜇𝑖 𝐼

=⇒ 𝐴𝑖+1 = 𝑄𝑇
𝑖 𝐴𝑖𝑄𝑖

From this shift, the ratio from which we can determine the speed of
converge is e�ectively | (𝜆𝑖−1 − 𝜇) / (𝜆𝑖 − 𝜇) |, where 𝜇 is the current
value in our sequence. To minimize this ratio, we aim to select a 𝜇
close to 𝜆𝑖−1. One e�ective method is to set 𝜇 = (𝐴𝑖)𝑛𝑛 , known as
shifting by the Rayleigh quotient. Another method, used speci�cally
for symmetric matrices, is to calculate aWilkinson Shift. Given that
the lower right sub-matrix of 𝐴𝑖 is [𝑥,𝑦;𝑦, 𝑧], we determine 𝜇𝑖 as:

𝛿 =
𝑥 − 𝑧
2

𝜇𝑖 = 𝑧 − sign(𝛿) · 𝑦2

|𝛿 | −
√
𝛿2 + 𝑦2

Note that sign(𝛿) equals −1 or 1, and is arbitrarily equal to 1 if
𝛿 = 0. We implemented and tested both of these methods.

3.3 Eigenvector Calculation
While implementing shifting or de�ation allowed us to calculate
extremely precise eigenvalues, we still have yet to calculate eigen-
vectors. Our solution to this problem took the form of two steps –
�rstly, we added elements of simultaneous iteration, and secondly,
we implemented inverse iteration.
Earlier we stated that the 𝑄𝑅 method can be thought of as the
power method operating on a basis of vectors. We will elaborate
more on this idea now. Suppose we chose a basis of starting vec-
tors for the power method to operate on 𝑛 × 𝑛 matrix 𝐴, namely
®𝑣1, ®𝑣2, . . . , ®𝑣𝑛 . First, we impose these vectors into the columns of
a matrix 𝑉 . Now, for large 𝑘 , we simply take 𝐴𝑘𝑉 producing a
basis of eigenvectors. However, these eigenvectors may all be the
exact same as one another. So, instead of simply taking a power,
we iteratively orthogonalize our basis 𝑉 using QR decomposition.
This presents a recursive formula as shown for 𝑘 ∈ N+, known as
simultaneous iteration:

𝑉0 = 𝑄0𝑅0, 𝑊𝑘 = 𝐴𝑄𝑘−1, 𝑊𝑘 = 𝑄𝑘𝑅𝑘

All𝑄𝑘 are orthonormal, and all 𝑅𝑘 are upper triangular. As a result,
as we iterate through new values of𝑊 , we generally �nd that 𝑄𝑘

will result in a basis of unit eigenvectors of 𝐴. We can think of the
QR method as a simultaneous iteration process, starting with𝑉 = 𝐼 .
In terms of the 𝑄𝑅 method, let 𝑄̂𝑖 be de�ned as:

𝑄̂𝑖 =

𝑖∏
𝑘=0

𝑄𝑖 = 𝑄0𝑄1 . . . 𝑄𝑖

That is, 𝑄̂𝑖 is equal to the product of the values for 𝑄 for each 𝑄𝑅

decomposition when conducting the 𝑄𝑅 method. Using this new
de�nition, we can rewrite the𝑄𝑅 method similarly to simultaneous
iteration:

𝑄̂0 = 𝐼 , 𝑊𝑘 = 𝐴𝑄̂𝑘−1, 𝑊𝑘 = 𝑄̂𝑘𝑅𝑘 , 𝐴𝑘 = 𝑄̂𝑇
𝑘
𝐴𝑄̂𝑘

3

To see more clearly why 𝐴𝑘 = 𝑄̂𝑇
𝑘
𝐴𝑄̂𝑘 , note that 𝐴𝑘+1 = 𝑄𝑇

𝑘
𝐴𝑘𝑄𝑘 ,

and as a result𝐴1 = 𝑄𝑇
0𝐴𝑄0. Proceeding inductively, it follows that:

𝐴𝑘 = 𝑄𝑇
𝑘
. . . 𝑄𝑇

1𝑄
𝑇
0𝐴𝑄0𝑄1 . . . 𝑄𝑘 =⇒ 𝐴𝑘 = 𝑄̂𝑇

𝑘
𝐴𝑄̂𝑘

Note that as the similarity relation 𝐴𝑘+1 = 𝑄𝑇
𝑘
𝐴𝑘𝑄𝑘 is preserved

when shifting, thinking about the 𝑄𝑅 method as simultaneous iter-
ation remains valid when shifting is also implemented.
The simultaneous iteration sequence de�ned above and our tra-
ditional 𝑄𝑅 method will produce the same sequences of 𝐴𝑘 , 𝑄̂𝑘 .
However, now we can use simultaneous iteration to conclude that
𝑄̂𝑘 will generally converge to a basis of eigenvectors for 𝐴.
In practice, this method may often require far more iterations to
generate eigenvectors as opposed to simply generating eigenvalues.
Furthermore, the eigenvalue approximations proved more accu-
rate. As a result, we implemented a secondary method to use on
the eigenvectors produced by our 𝑄𝑅 method to ensure accurate
calculations. This method is known as inverse iteration.
Inverse iteration, or the inverse power method, is very similar to the
power method. Given an approximation of an eigenvector ®𝑏0, and
an approximation of corresponding eigenvalue 𝜇, we can iteratively
�nd a better approximation for the eigenvector as so:

®𝑣𝑖 = (𝐴 − 𝜇𝐼)−1®𝑏𝑖 ®𝑏𝑖+1 =
®𝑣𝑖
| |®𝑣𝑖 | |

While the power method takes powers of 𝐴𝑘 , the inverse power
method instead takes powers of (𝐴−1)𝑘 . The 𝜇 simply determines
our shift. For each eigenvector/eigenvalue pair produced by the
QR method, we did a few iterations of the inverse power method.
After just a few iterations, our approximations for the eigenvectors
of 𝐴 become extremely accurate. Our �nal eigenvector/eigenvalue
method works as follows:
To compare the e�ciencies of our naive QRmethod, our QRmethod
with de�ation, and our QR method with shifting (Rayleigh shift)
and de�ation, we computed runtimes to generate eigenvalues av-
eraged over 100 𝑛 × 𝑛 symmetric matrices of varying 𝑛. This is
displayed in the �gure below:

0 20 40 60

0

0.05

0.1

0.15

Size of Matrices (𝑛 × 𝑛)

Av
er
ag
e
Ru

nt
im

e
(s
ec
)

Naive
De�ation

Def. & Shifting

Interestingly, for smaller matrices (5 ≤ 𝑛 ≤ 15), the de�ation-only
algorithm has a lower runtime than the algorithm implementing
both de�ation and shifting. This could be attributed to the overhead
required for shifting, which presents a net bene�t only when we
are working with large enough matrices.

Algorithm 4 Final 𝑄𝑅 Method

Require: 𝐴 is 𝑛 × 𝑛,𝑀 is reasonable margin of error, 𝑘 ∈ Z+
Ensure: elements of 𝐿 are valid eigenvalues of 𝐴
Ensure: columns of 𝑄̂ are valid eigenvectors of 𝐴
1: 𝐿 ← array of size 𝑛
2: 𝑄̂ ← 𝐼𝑛
3: 𝑖 ← 𝑛 (indexing current eigenvalue)
4: 𝑐 ← 𝐴𝑖𝑖 (current eigenvalue approximation)
5: while 𝑖 > 0 do
6: 𝜇 ← shift value (i.e. 𝐴𝑛𝑛)
7: 𝑄, 𝑅 ← 𝑄𝑅 decomp. of 𝐴 − 𝜇𝐼
8: 𝑄̂ ← 𝑄̂𝑄

9: 𝐴← 𝑅𝑄 + 𝜇𝐼 (calculating next item in sequence)
10: if |𝐴𝑖𝑖 − 𝑐 | ≤ 𝑀 then
11: 𝐿 ← 𝐴𝑖𝑖

12: 𝑖 ← 𝑖 − 1
13: else
14: 𝑐 = 𝐴𝑖𝑖

15: end if
16: end while
17: for 𝑖 : 1→ 𝑛, 𝑗 : 1→ 𝑘 do
18: 𝑣 = (𝐴 − 𝐿[𝑖] · 𝐼)−1𝑄̂∗𝑖
19: 𝑄̂∗𝑖 = 𝑣 / | |𝑣 | |
20: end for
21: return 𝐿, 𝑄̂

4 SPARSE AND DENSE MATRICES
Often the density of a matrix can a�ect the speed at which our
eigenvalue methods can work. To investigate this, we built and
conducted an experiment to test the performance of each method
on sparse and dense matrices of the same size. To measure how
sparse or dense amatrix was, we calculated a "zero ratio," or the ratio
between the number of zeros in the matrix and the total entries
in the matrix. For a range of varying zero ratios, we randomly
generated sample sets of 100 symmetric matrices of approximately
the ratio (±2%), and found the average runtime for each algorithm
to �nd eigenvalues for each matrix. As our implementation of the
power method was somewhat limited, we instead used the power
method provided by the Julia IterativeSolvers package for testing.
Displayed below is the averaged runtimes for the power method:

0 0.2 0.4 0.6 0.8 1
4

5

6

7

·10−5

Zero Ratio

Av
er
ag
e
Ru

nt
im

e
(s
ec
)

4

The �gure above shows that the power method has a far greater run-
time for matrices of approximately 75% zeros, but runtime quickly
decreases after this point as matrices become more and more sparse.
In contrast, we can see the graph implemented for the QR method
(with de�ation and a Rayleigh shift) below.

0 0.2 0.4 0.6 0.8 1

7

8

9

·10−3

Zero Ratio

Av
er
ag
e
Ru

nt
im

e
(s
ec
)

Note that this �gure is at a magnitude of 100 times that of the �gure
with the power method. While this might imply that the power
method is far faster than the QR method for this size of matrix, we
posit that this di�erence is simply an artifact of the power method
being designed professionally for the Julia language, while the QR
algorithm was put together from scratch by ourselves. We see that
while the QR method remains relatively constant in runtime for
almost all levels of density, only when matrices become very dense
(density ratio > 90%) does runtime begin to decrease.
The fact that the QR method retains similar runtime for matrices
of high or medium density, while the power method shows a steep
increase in runtime for matrices of medium density, suggests that
the QRmethodwould be preferable for densematrices. Furthermore,
the fact that the power method begins a decrease in runtime for
increasingly sparse matrices earlier than the QR method supports
the idea that the power method would be preferable for use with
sparse matrices.

5 SINGULAR VALUE DECOMPOSITION
The singular value decomposition (SVD) of a matrix𝑚 × 𝑛 matrix
𝐴 takes the form of 𝐴 = 𝑈 Σ𝑉𝑇 . Where 𝑈 is 𝑚 ×𝑚, Σ is 𝑚 × 𝑛

and 𝑉 is 𝑛 × 𝑛. Furthermore, the columns of 𝑈 and the columns
of 𝑉 are orthonormal and Σ has value 0 on every element except
those on its diagonal, which can be 0 or nonzero. It follows that
the columns of 𝑉 are the eigenvectors of 𝐴𝑇𝐴, the columns of 𝑈
are the eigenvectors of 𝐴𝐴𝑇 . Finally, the non-zero values upon
the diagonal of Σ, namely 𝜎1, 𝜎2, . . . , 𝜎𝑟 are the square root of the
shared eigenvalues between𝐴𝐴𝑇 and𝐴𝑇𝐴. The rest of the singular
values, 𝜎𝑟+1, . . . , 𝜎min(𝑚,𝑛) are zero. Thus, for 1 ≤ 𝑖 ≤ min(𝑚,𝑛), it
follows:

𝐴𝑉∗𝑖 = 𝜎𝑖𝑈∗𝑖 and 𝐴𝑇𝑈∗𝑖 = 𝜎𝑖𝑉∗𝑖

Thus, either by calculating the unit eigenvectors/eigenvalues of
𝐴𝑇𝐴 or calculating the unit eigenvectors/eigenvalues of 𝐴𝐴𝑇 , we
can determine the singular value decomposition of our matrix. This
is summarized in the algorithm below:

Algorithm 5 SVD Calculation
Require: 𝐴 is𝑚 × 𝑛
Ensure: 𝐴 = 𝑈 Σ𝑉𝑇

Ensure: 𝑈 , Σ, 𝑉 in proper 𝑆𝑉𝐷 format
1: Σ←𝑚 × 𝑛 matrix
2: if 𝑚 ≤ 𝑛 then
3: 𝐿,𝑉 ← get eigenvalues/vectors (𝐿, 𝑄̂) of 𝐴𝑇𝐴
4: 𝑈 ←𝑚 ×𝑚 matrix
5: for 𝑖 : 1→𝑚 do
6: Σ𝑖𝑖 ←

√
(𝐿[𝑖])

7: 𝑈∗𝑖 = (𝐴𝑉∗𝑖) / Σ𝑖𝑖
8: end for
9: else
10: 𝐿,𝑈 ← get eigenvalues/vectors (𝐿, 𝑄̂) of 𝐴𝐴𝑇
11: 𝑉 ← 𝑛 × 𝑛 matrix
12: for 𝑖 : 1→ 𝑛 do
13: Σ𝑖𝑖 ←

√
(𝐿[𝑖])

14: 𝑉∗𝑖 = (𝐴𝑇𝑈∗𝑖) / Σ𝑖𝑖
15: end for
16: end if
17: return 𝑈 , Σ,𝑉

6 IMAGE COMPRESSION
As discussed in class, we can use singular value decomposition to
produce a compressed version of an image. For the sake of simplicity,
we simply use black and white images. In this way, images can be
represented as a matrix with each value representing the "darkness"
at each pixel position. This compression is a result of us being able
to write out a singular value decomposition not just as the product
of three matrices, but as the sum of multiple vector products:

𝐴 =

𝑟∑
𝑖=1

𝜎𝑖𝑈∗𝑖𝑉𝑇
∗𝑖

It follows that we can form a low rank approximation by removing
elements of the summation with low values for 𝜎𝑖 . As the singular
values are listed in the SVD from greatest to least, we can quite
e�ciently use low rank approximation to create an image com-
pression by setting singular values to 0 (e�ectively shortening the
summation).
Note that singular value decomposition image compression, while
e�ective in producing an accurate result, is very memory and com-
putation intensive. Furthermore, as SVD compression has a �oating-
point implementation, it presents multiple �oating-point problems
compared to more often-used �xed-point algorithms. However,
SVD image compression is an e�ective demonstration of the SVD.
To show a practical test of our algorithm, we computed the com-
pression for some stock images provided by Julia. Speci�cally, the
image presented here is originally 512 × 512.

5

From left to right then top to bottom, the images above are the orig-
inal image, a rank 200 compression, rank 100 compression, rank
50 compression, rank 30 compression, and �nally a rank 5 com-
pression. As you can see, even at relatively row ranks, we can still
produce an image with very low loss of image quality.

7 IMAGE STEGANOGRAPHY
Using singular value decomposition, we can also implement image
steganography for a black and white image. Steganography is the
process of concealing information within a �le, message, video, or
in our case, an image. Generally, we aim to hide data in parts of our
image �le that result in the least change to end output (how the
picture looks). Fortunately, SVD provides a simple way to classify
what will create the most change to our output and what will create
the least. Similarly to how low rank approximations remove data
that is the least important to a �nal image, our steganographic
algorithm modi�es this data to contain our message.
First, we start with a string of zeroes and ones that we would like
to hide in our image. For example, we could take the string “torin"
converted from ASCII to binary:

011101000110111101110010011010010110111000000000

This results in bit-string of 48 total elements (we end with a null-
terminator, "\0"). Next, we �nd an image to hide our message in.
For our example, we will use a 256x256 pixel stock image of Fabio
provided by Julia:

Julia allows us to convert this image into a matrix𝑀 of �oat values,
of dimension 256 × 256. It follows that we can partition 𝑀 into a
block matrix containing 1024 smaller matrices, each with dimen-
sion 8 × 8. We will encode a single 0 or 1 into each of the �rst 48 of
these matrices.
Now, consider arbitrary 8 × 8 matrix 𝐴 from the block matrix𝑀 . It
follows that by taking the SVD, we �nd𝐴 = 𝑈 Σ𝑉𝑇 . Let the singular
values, or those values along the diagonal of Σ, be 𝜎1, 𝜎2, . . . , 𝜎8. By
nature of SVD, we know that the last few singular values have a
very small impact on the �nal matrix 𝐴, while the �rst few singular
values have a much greater impact on the �nal matrix𝐴. As a result,
we will use the last few singular values to transmit our message. If
we would like to transmit a 0, we will modify 𝐴 so that 𝜎8 � 0. If
we would like to transmit a 1, we will modify 𝐴 so that 𝜎8 ≈ 0.
To modify our matrix 𝐴 so that 𝜎8 ≈ 0, we can simply set 𝜎8 = 0.
However, to modify our matrix𝐴 so that 𝜎8 � 0, we can not simply
set 𝜎8 = 0.01 (or some other arbitrary constant of a reasonable
magnitude). This will be ine�ective, if, for instance 𝜎7 = 0. Thus,
for each value 𝜎1 through 𝜎8, if the value is very close to 0, we set
it to a non-zero constant. In this way, we can ensure that when the
decoder recalculates the SVD, 𝜎8 ≈ 0. Once we have set our new
singular values, we simply recalculate𝐴𝑐 = 𝑈 Σ𝑉𝑇 , where𝐴𝑐 is our
encoded matrix. By calculating 𝐴𝑐 for the �rst 48 block matrices
and imposing them back into𝑀 , we have our encoded image𝑀𝑐 .
For our example, the resulting image is shown below.

As you can see, the message is hidden with imperceptible di�er-
ence in the �nal image. To decrypt the encoded image, one simply

6

continues to take SVD of the smaller matrices and measure 𝜎8 until
they reach the null-terminator.

ACKNOWLEDGMENTS
This work was completed as a �nal project for the 21-241 class
for the Fall 2020 semester. We thank the teaching sta�, including
teaching assistants and professor David O�ner, for contributing
their time and expertise.

REFERENCES
Panju, M. (2011). Iterative Methods for Computing Eigenvalues and
Eigenvectors. TheWaterlooMathematics Review. http://mathreview.
uwaterloo.ca/archive/voli/1/panju.pdf

Saad, Y. (2011). Numerical methods for large eigenvalue problems
(Rev. ed.). Society for Industrial and Applied Mathematics SIAM,
3600 Market Street, Floor 6, Philadelphia, PA 19104. https://epubs.
siam.org/doi/book/10.1137/1.9781611970739

Strang, G. (2016). Introduction to Linear Algebra (Gilbert Strang)
(5th ed.).Wellesley-Cambridge Press. https://math.mit.edu/ gs/linearalgebra

The QR algorithm. (n.d.). Retrieved December 11, 2020, from http://
pi.math.cornell. edu/web6140/TopTenAlgorithms/QRalgorithm.html

Wengerho�, D. (2006). Using the singular value decomposition for
image steganography. ProQuest Dissertations Publishing. https://lib.dr.
iastate.edu/cgi/viewcontent.cgi?article=2387context=rtd

White, P. A., & Brown, R. R. (1964). A comparison of methods for
computing the eigenvalues and eigenvectors of real symmetric ma-
trix.Mathematics of Computation, 18(87), 457. https://doi.org/10.1090/s0025-
5718-1964-0165667-0

7

Final Code

December 11, 2020

This Notebook contains the breadth of code that we wrote and implemented in this project. It
assumes all necessary packages have already been added.

[1]: using Polynomials
using LinearAlgebra
using Statistics
using Random
using IterativeSolvers
#For image compression, image steganorgraphy:
using Images
using TestImages
using Colors

Power Method

[2]: # Calculates the largest eigenvalue via the power method
function max_power_method(A)

y_final = fill(1, size(A)[1])
tol=1e-11 #Margin of error to measure convergence
m = 0
while(true)

mold = m
#Save old eigenvector
y_old = y_final
y_final = A * y_final
m = dot(y_final, y_old)/dot(y_old, y_old)
scale = maximum(abs.(y_final))
y_final = y_final/scale
#Check for convergence
if (abs(m - mold) < tol)

return m, y_final
end

end
end

[2]: max_power_method (generic function with 1 method)

1

[3]: # Deflates the matrix A so that we can calculate a new eigenvalue
function deflation(A, x, v)

y = norm(v)^2
B = A - x/y*v*v"0027
return B

end

[3]: deflation (generic function with 1 method)

[4]: # Combines max_power_method and deflation to calculate all of the eigenvalues
function power_method(A)

O = zeros(Float64, size(A))
A_old = convert(Array{Float64}, A)
n = size(A)[1]
ind = 1 # keeps track of how many eigenvalues we have computed
while(ind <= n)

x, v = max_power_method(A_old)
A_new = deflation(A_old, x, v)
O[ind,ind] = x
#A_final[:, ind] = v
A_old = A_new
ind += 1

end
return O

end

[4]: power_method (generic function with 1 method)

QR Decomposition

[5]: # slower method for QR decompositon
directly writes the Gram-Schmidt algorithm into code
see "Algorithm 1" in paper
function QR(M)

Q = Array{Float64, 2}(undef, size(M))
R = zeros(Float64, size(M)[2], size(M)[2])
for k = 1:size(M)[2]

a = M[:, k]
s = a
for i = 1:k-1

s -= dot(Q[:, i], a) * Q[:, i]
end
Q[:, k] = s / norm(s)

end

for i = 1:size(M)[1]
for j = i:size(M)[2]

2

R[i, j] = dot(Q[:, i], M[:, j])
end

end
return Q, R

end

[5]: QR (generic function with 1 method)

[6]: # faster method of QR decomposition
see "Algorithm 2" in paper
function QRfast(M)

Q = Array{Float64, 2}(undef, size(M))
R = zeros(Float64, size(M)[2], size(M)[2])
for k = 1:size(M)[2]

s = dot(M[:, k], M[:, k])
R[k, k] = sqrt(s)
Q[:, k] = M[:, k] / R[k, k]
Q[:, k] = Q[:, k] / norm(Q[:, k])
for i = k+1:size(M)[2]

s = dot(M[:, i], Q[:, k])
R[k, i] = s
M[:, i] -= R[k, i] * Q[:, k]

end
end
return Q, R

end

[6]: QRfast (generic function with 1 method)

[7]: # Used to time the QR and QRfast algorithms
function get_speeds(s)

k = 100
t1s = zeros(Float64, k)
t2s = zeros(Float64, k)
for i = 1:k

B = rand(s, s)
A = transpose(B) * B
t1 = @timed QR(A)
t2 = @timed QRfast(A)
t1s[i] = t1[2]
t2s[i] = t2[2]

end
println(s, "\t", mean(t1s), "\t", mean(t2s))

end

[7]: get_speeds (generic function with 1 method)

3

QR Method

The first set of QR method implementations only calculate eigenvalues. These were used in testing
between different implementations, such as using deflation and shifting (see paper, section 3.2).
The last QR method implements eigenvector calculation as well.

[8]: # Simple QR Method for only eigenvalues -- no shifting, no deflation
see paper, "Algorithm 1"
function eigenvals_naive(A)

B = copy(A)
n = size(B)[1]
eigenvalues = zeros(Float64, n)
current = B[n, n]
while(n > 0)

Q, R = QRfast(B)
B = R * Q
if isapprox(B[n, n], current; atol=1e-3, rtol=0)

eigenvalues[n] = B[n, n]
n -= 1

else
current = B[n, n]

end
end
return eigenvalues

end

[8]: eigenvals_naive (generic function with 1 method)

[9]: # QR Method for only eigenvalues, implementing deflation -- still no shifting
function eigenvals_deflate(A)

B = copy(A)
n = size(B)[1]
eigenvalues = zeros(Float64, n)
current = B[n, n]
while(n > 0)

Q, R = QRfast(B)
B = R * Q
if isapprox(B[n, n], current; atol=1e-3, rtol=0)

eigenvalues[n] = B[n, n]
n -= 1
B = B[1:n, 1:n] #deflate

else
current = B[n, n]

end
end
return eigenvalues

end

4

[9]: eigenvals_deflate (generic function with 1 method)

[10]: # formula for Wilkinsion shift
function wilkinson(A, n)

if n == 1
return 0 # if problem is occurred, return 0 (no shift)

end
x = A[n-1, n-1]
y = A[n,n]
z = A[n-1, n]
delta = (x - z)/2
if delta >= 0

sgn = 1
else

sgn = -1
end
rval = z - (sgn * y * y)/(abs(delta) - sqrt(delta * delta + y * y))
if rval == -Inf || rval == NaN

return 0 # if problem is occurred, return 0 (no shift)
end
return rval

end

[10]: wilkinson (generic function with 1 method)

[11]: # QR Method for only eigenvalues, implementing deflation and shifting
function eigenvals_shift(A)

B = copy(A)
n = size(B)[1]
eigenvalues = zeros(Float64, n)
current = B[n, n]
while(n > 1)

Rayleigh shift currently implemented, Wilkinsion commented
mu = B[n, n] #wilkinson(B, n)
Q, R = qr(B - (mu * I))
B = (R * Q) + (mu * I)
test for convergence:
if isapprox(B[n, n], current; atol=1e-5, rtol=0)

eigenvalues[n] = B[n, n]
n -= 1
B = B[1:n, 1:n]

else
current = B[n, n]

end
end
eigenvalues[1] = B[1, 1]
#eigenvalues = diag(B)

5

return reverse(sort(eigenvalues))
end

[11]: eigenvals_shift (generic function with 1 method)

[12]: # Used to time the three implementations of QR method
function get_speeds(s)

k = 100
t1s = zeros(Float64, k)
t2s = zeros(Float64, k)
t3s = zeros(Float64, k)
for i = 1:k

B = rand(s, s)
A = transpose(B) * B
t1 = @timed eigenvals_naive(A)
t2 = @timed eigenvals_deflate(A)
t3 = @timed eigenvals_shift(A)
t1s[i] = t1[2]
t2s[i] = t2[2]
t3s[i] = t3[2]

end
println(s, "\t", mean(t1s), "\t", mean(t2s), "\t", mean(t3s))

end

[12]: get_speeds (generic function with 1 method)

The final QR algorithm, implementing shifting, eigenvector calculation, and inverse iteration to
make eigenvector calculation more accurate is shown in ``get_eigens'' below:

[13]: # gets eigenvalues, eigenvectors
does not implement inverse iteration to hone eigenvector approximation
helper function of "get_eigens"
function qr_get_eigenvalues(A)

B = copy(A)
n = size(B)[1]
eigenvalues = zeros(Float64, n)
current = B[n, n]
Qiter = Matrix{Float64}(I, n, n)
while(n > 1)

mu = B[n, n]
Q, R = qr(B - (mu * I))
B = (R * Q) + (mu * I)
if isapprox(B[n, n], current; atol=1e-5, rtol=0)

eigenvalues[n] = B[n, n]
n -= 1
B = B[1:n, 1:n]

else

6

current = B[n, n]
end

end
eigenvalues[1] = B[1, 1]
return reverse(sort(eigenvalues)), Qiter

end

[13]: qr_get_eigenvalues (generic function with 1 method)

[14]: # helper function for inverse iteration
function inverse_iteration_single(A, val, b)

try
c = inv(A - val * I) * b
return c / norm(c)

catch e
return inverse_iteration_single(A, val * 1.5, b)

end
end

[14]: inverse_iteration_single (generic function with 1 method)

[15]: # implements inverse iteration given:
matrix A
eigenvalue approx. val
eigenvector approx. b

runs n times
function inverse_iteration(A, val, b, n)

c = copy(b)
for i = 1:n

c = inverse_iteration_single(A, val, b)
end
return c

end

[15]: inverse_iteration (generic function with 1 method)

[16]: # calculates eigenvectors and eigenvalues using QR method and inverse iteration
see paper, "Algorithm 4"
function get_eigens(A)

vals, Q = qr_get_eigenvalues(A)
for i = 1:size(vals)[1]

Q[:, i] = inverse_iteration(A, vals[i], Q[:, i], 25)
end
return vals, Q

end

[16]: get_eigens (generic function with 1 method)

7

[17]: # simple test for eigenvector/eigenvalue approximations
calculates difference between Ax and !x
function test_eigens(A, vals, vecs)

test = zeros(size(vals)[1])
for i = 1:size(vals)[1]

println(norm((A * vecs[:, i]) - (vals[i] * vecs[:, i])))
test[i] = norm((A * vecs[:, i]) - (vals[i] * vecs[:, i]))

end
return Statistics.mean(test)

end

[17]: test_eigens (generic function with 1 method)

Sparse and Dense Matrices

The first set of methods is used to design test matrices and ensure they functon correctly. See
paper, section 4.

[18]: # counts the total number of zeros in a matrix.
function count_zeroes(A)

total = 0
for i = 1:size(A)[1]

for j = 1:size(A)[2]
if A[i, j] == 0

total += 1
end

end
end
return total

end

[18]: count_zeroes (generic function with 1 method)

[19]: # generates test matrix of dim. "0027size"0027 x "0027size"0027
matrix must be symmetric, have approx. "0027zero_ratio"0027 percent zeros as␣
↩→its elements

function generate_matrix(size, zero_ratio)
zero_count = trunc(Int, (size * size) * zero_ratio * 0.5)
val_size = trunc(Int, size * (size * 0.5 + 0.5))
vals = rand(val_size) # total number of distinct values in symmetric matrix
r = randperm(val_size - size)[1:zero_count] # get elements to be 0
vals[r] .= 0
A = zeros(size, size)
x = 1
y = 1
for i = 1:val_size

A[x, y] = vals[i]
A[y, x] = vals[i]

8

x += 1
if x > size

y += 1
x = y

end
end
return A

end

[19]: generate_matrix (generic function with 1 method)

[20]: # test speed of function between qr method with shifting, deflation, and power␣
↩→method

note that power method from IterativeMethod pkg is used (see paper section 4␣
↩→for explanation)

function get_speeds(size, zero_ratio)
k = 100
t1s = zeros(Float64, k)
t2s = zeros(Float64, k)
z = zeros(Float64, k)
for i = 1:k

A = generate_matrix(size, zero_ratio)
z[i] = count_zeroes(A)
t1 = @timed eigenvals_shift(A)
t2 = @timed powm(A, inverse=false, log=false)
t1s[i] = t1[2]
t2s[i] = t2[2]

end
println(mean(z) / (size * size), "\t", mean(t1s), "\t", mean(t2s))

end

[20]: get_speeds (generic function with 2 methods)

Singular Value Decomposition

[21]: # gets the singular value decompositon using QR method
see paper section 5, and paper, algorithm 5
function getSVD(A)

sigma = zeros(Float64, size(A))
if size(A)[1] <= size(A)[2]

SVcount = size(A)[1]
ATA = transpose(A) * A
ATA_vals, V = get_eigens(ATA)
U = zeros(Float64, SVcount, SVcount)
for i = 1:SVcount

sigma[i, i] = sqrt(ATA_vals[i])
U[:, i] = (A * V[:, i]) / sigma[i, i]

9

end
return U, sigma, V

else
SVcount = size(A)[2]
AAT = A * transpose(A)
AAT_vals, U = get_eigens(AAT)
V = zeros(Float64, SVcount, SVcount)
for i = 1:SVcount

sigma[i, i] = sqrt(AAT_vals[i])
V[:, i] = (transpose(A) * U[:, i]) / sigma[i, i]

end
return U, sigma, V

end
end

[21]: getSVD (generic function with 1 method)

[22]: # simple testing function for SVD calculation
calculated difference between matrix and U*Sigma*V^T
function testSVD(A, U, S, V)

diff = abs.(A - U * S * transpose(V))
return mean(diff)

end

[22]: testSVD (generic function with 1 method)

Image Compression

[23]: # takes an image and gets matrix of floats describing black and white version␣
↩→of image

function get_matrix_from_image(img_string)
img = testimage(img_string) # gets image from Julia TestImages
gray_img = Gray.(img)
return convert(Array{Float64}, gray_img)

end

[23]: get_matrix_from_image (generic function with 1 method)

[24]: # Calculate a rank r image compression from the SVD
function compress(U, S, V, r)

Ssmall = copy(S)
for i = r+1:size(S)[2]

Ssmall[i, i] = 0
end
return U * Ssmall * transpose(V)

end

10

[24]: compress (generic function with 1 method)

[25]: # will load color image of fabio (256x256), perform low rank approx.␣
↩→compression (rank 50), and present compressed image

note -- may take some time to run!
function compression_example()

M = get_matrix_from_image("fabio_color_256")
println("loaded. getting SVD...")
U, S, V = getSVD(M)
println("SVD obtained. getting compression...")
small = compress(U, S, V, 50) # rank 50 compression
println("complete!")
return Gray.(small)

end

[25]: compression_example (generic function with 1 method)

[26]: compression_example()

loaded. getting SVD…
SVD obtained. getting compression…
complete!

[26]:

Image Steganography

11

[27]: # Encodes message into image
M is output of "get_matrix_from_image"
msg is array of 0"0027s and 1"0027s
function encoder(M, msg)

code = copy(M)
msg_index = 1
for i = 1:size(M)[1]/8 - 1

for j = 1:size(M)[2]/8 - 1
submatrix = code[convert(Int64, 8*i):convert(Int64, 8*i+7),␣

↩→convert(Int64, 8*j):convert(Int64, 8*j+7)]
U, s, V = svd(submatrix)
S = diagm(s)
If we want to send a "0"
if msg[convert(Int64, msg_index)] == 0

S[8, 8] = 0
else # If we want to send a "1"
if abs(S[1, 1]) < 1.0e-10

S[5, 5] = .01
end
if abs(S[2, 2]) < 1.0e-10

S[5, 5] = .01
end
if abs(S[3, 3]) < 1.0e-10

S[5, 5] = .01
end
if abs(S[4, 4]) < 1.0e-10

S[5, 5] = .01
end
if abs(S[5, 5]) < 1.0e-10

S[5, 5] = .01
end
if abs(S[6, 6]) < 1.0e-10

S[5, 5] = .01
end
if abs(S[7, 7]) < 1.0e-10

S[5, 5] = .01
end
if abs(S[8, 8]) < 1.0e-10

S[5, 5] = .01
end

end
code[convert(Int64, 8*i):convert(Int64, 8*i+7), convert(Int64, 8*j):

↩→convert(Int64, 8*j+7)] = U * S * transpose(V)
msg_index += 1
if msg_index > size(msg)[2]

return code
end

12

end
end
println("message too long - not fully encoded!")
return code

end

[27]: encoder (generic function with 1 method)

[28]: # Decodes message from image, given length of message
M is output of "get_matrix_from_image"
returns array of 0"0027s and 1"0027s
function decoder(M, len)

M is m x n
code = copy(M)
msg_index = 1
msg = Array{Int64,2}(undef, 1, len)
for i = 1:size(M)[1]/8 - 1

for j = 1:size(M)[2]/8 - 1
submatrix = code[convert(Int64, 8*i):convert(Int64, 8*i+7),␣

↩→convert(Int64, 8*j):convert(Int64, 8*j+7)]
U, S, V = svd(submatrix)
#println(S[8])
if S[8] < 1e-10

msg[msg_index] = 0
else

msg[msg_index] = 1
end
msg_index += 1
if msg_index > len

return msg
end

end
end
println("message len too long - not fully encoded!")
return msg

end

[28]: decoder (generic function with 1 method)

[29]: # will load color image of fabio (256x256), make it black and white, hide bit␣
↩→string, and decrypt bit string

note -- may take some time to run!
function steganography_example()

M = get_matrix_from_image("fabio_color_256")
msg = [0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1␣

↩→1 0 1 1 1 0 0 0 0 0 0 0 0 0]
code = encoder(M, msg)

13

d = decoder(code, 48)
println("Encoded message:")
println(msg)
println("Decoded message:")
println(d)
println("Difference:")
println(abs.(d - msg))
println("Encoded Fabio:")
return Gray.(code) # encoded image

end

[29]: steganography_example (generic function with 1 method)

[30]: steganography_example()

Encoded message:
[0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0]
Decoded message:
[0 1 1 1 0 1 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 0 0 0]
Difference:
[0 0
0 0 0 0 0 0 0 0]
Encoded Fabio:

[30]:

14

Thank you!

15

